

# Additive Manufacturing

## Your systems, made better

Maximise your production & profitability

Put the power back in your hands, go to market faster and be more profitable with our complementary additive manufacturing systems.

Leveraging our patented Titomic Kinetic Fusion (TKF) technology, we work with you to integrate our custom in-line manufacturing solutions into your production line.

Our systems are specifically designed to your needs and engineered to reduce lead times, maximise uptime, cut material costs and enhance performance. So you can add greater efficiency to your operations and unlock new material possibilities – to maximise production and profitability.



Orn

From prototyping to R&D, small-run production and on-demand manufacturing, our fully customisable Titomic Kinetic Fusion Additive Manufacturing (TKF AM) systems bring the limitless possibilities of high-pressure cold spray technology and more to your factory floor – without making your existing equipment obsolete.



# J

# **Common applications**

Titomic's turnkey TKF AM systems harness cold spray technologies together with machines, materials, software and robotics (backed by training and support) to produce better-performing parts for a variety of applications in high-pressure environments:



#### BARRELS

Produce large multi-metal or single-metal barrels that are lighter and offer better corrosion and erosion performance than traditional techniques.



#### TOOLING

Produce stronger, lighter, thinner and corrosionresistant near-net shape faceplates – with reduced welding, assembly and lead times.



#### **BALLISTICS SHIELDING**

Create complex, freeform ballistics protection from multiple metals or titanium to produce larger, lighter, more versatile armour.



#### **STRUCTURES**

Replace complex and costly welded assemblies with single-piece structures.

## System category

Our standard systems are tailored for straightforward, repeatable tasks, while our robotic line excels in versatility, necessary for complex additive manufacturing. The low-pressure option is perfect for coatings and repairs, whereas the high-pressure system is designed to handle harder materials and demanding additive manufacturing for aerospace, defence, and beyond.

#### Standard S

An efficient, cost-effective system with the fundamental features and reliability needed for straightforward, repeatable tasks.

#### Professional P

An innovative system with the advanced features and enhanced performance needed for high-end manufacturing applications.

#### Linear L

Used for 'back and forth' coating or manufacturing operations, this relates to the robotics' axes of motion (X, Y).

## Robotic R

Used for enhanced robotic head manipulation and suitable for additive manufacturing and complex coatings, this relates to the robotics' axes of motion (X, Y, Z).

## **Pressure type**

#### Low-pressure (LPCS)

Low-pressure cold spray is portable, allowing for on-site application of nickel, aluminum, tin, and bronze on heat-sensitive surfaces. Ideal for versatile repair and coatings.

#### Medium-pressure (MPCS)

Medium-pressure cold spray delivers durable steel and titanium coatings. While still portable, these systems offer a solution for damage repair and hard wearing coatings.

#### High-pressure (HPCS)

High-pressure cold spray facilitates robotic additive manufacturing with desirable metals such as titanium and Inconel, producing high-performance parts for aerospace, defence, and beyond.

# Systems by industry application

| Industry                             | Challenge                                                                                                                                                                                                                                                                                                                                                                                                           | Cold Spray Solution                                                                                                                                                                                                                                                                                                                                                                                                             | Titomic System                |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Defence                              | Long lead times for critical equipment                                                                                                                                                                                                                                                                                                                                                                              | Barrels, ballistics shielding, armaments, titanium components.                                                                                                                                                                                                                                                                                                                                                                  | TKF 1000   Custom TKF Systems |
|                                      | Heavy ballistics protection, highly reliant on steel                                                                                                                                                                                                                                                                                                                                                                | Develop composite armor by integrating titanium and<br>ceramics using Titomic Kinetic Fusion technology.<br>This process utilizes cold spray techniques to adjust<br>parameters, forming hard exterior plates that shatter<br>projectiles and incorporating softer, ductile titanium<br>layers within the same component to absorb impacts<br>effectively.                                                                      | TKF 1000   Custom TKF Systems |
|                                      | Heavy and steel-based<br>armaments Utilize Titomic Kinetic Fusion to enhance artillery<br>barrel construction by integrating titanium and copper.<br>This innovation streamlines logistics and optimizes<br>heat dissipation, enabling a higher rate of fire. The<br>incorporation of hard-wearing metals also ensures<br>durability, preventing premature wear and extending the<br>barrel's operational lifespan. |                                                                                                                                                                                                                                                                                                                                                                                                                                 | TKF 1000   Custom TKF Systems |
|                                      | Lengthening armaments<br>effective range                                                                                                                                                                                                                                                                                                                                                                            | Employ Titomic Kinetic Fusion technology to fabricate<br>lightweight, freeform titanium components for<br>missiles and hypersonic projectiles. This advanced<br>manufacturing process significantly reduces part weight,<br>thereby extending range capabilities and maximizing<br>payload capacity for enhanced mission effectiveness.                                                                                         | TKF 1000   Custom TKF Systems |
| Aerospace                            | Sourcing cost-effective, high performance parts                                                                                                                                                                                                                                                                                                                                                                     | Titomic uses cost-effective metal powders, such as<br>titanium, to rapidly create near-net 3D parts. This means<br>lightweight, strong parts can be made with minimal<br>costs with short lead times.                                                                                                                                                                                                                           | TKF 1000   Custom TKF Systems |
|                                      | Long lead times in tooling production                                                                                                                                                                                                                                                                                                                                                                               | Create large-scale tooling for composites manufacturing<br>from Invar36. Cold spray creates denser, longer-lasting<br>tooling without the lead times.                                                                                                                                                                                                                                                                           | TKF 1000   Custom TKF Systems |
| Industry<br>Agnostic<br>Capabilities | Higher performing components                                                                                                                                                                                                                                                                                                                                                                                        | Cold spray technology facilitates the production<br>of large-scale components with superior material<br>characteristics, such as improved wear resistance and<br>mechanical strength, without the detrimental effects of<br>high-temperature processes.                                                                                                                                                                         | TKF 1000   Custom TKF Systems |
|                                      | Design flexibility and innovation                                                                                                                                                                                                                                                                                                                                                                                   | The cold spray process allows for greater design<br>versatility, enabling the creation of complex geometries<br>and the integration of multiple materials into a single<br>component, which is often not feasible with traditional<br>manufacturing methods.                                                                                                                                                                    | TKF 1000   Custom TKF Systems |
|                                      | Cost-effectiveness                                                                                                                                                                                                                                                                                                                                                                                                  | Traditional manufacturing often means removing<br>material from a billet to create the needed part.<br>With Titomic's additive manufacturing technology,<br>we add material to manufacture near-net parts. This<br>means material costs can be reduced by up to 90%.<br>Additionally, Titomic Kinetic Fusion can utilise lesser<br>refined powder feedstocks due to the absence of heat,<br>enabling further cost efficiencies. | TKF 1000   Custom TKF Systems |

## **Our systems**

#### **TKF SYSTEMS**

Ideal for low to mid-size production applications, our modular system offers rapid and agile manufacturing, prototyping, custom parts and pilot runs before mass production.

Can be used with a wide variety of metals and alloys including titanium, steel, copper, and nickel alloys.

#### **COMPLETE CUSTOMISATION**

Titomic creates custom systems to fit your exact part, production volume and speed needs – while also being optimised for your environment and easy to integrate into your production line.

Rather than being an alternative solution, our systems elevate and add value to your existing systems, enhancing your existing manufacturing activity.





# J

# How it works

Cold spray technology makes it quicker, easier, safer and more sustainable to produce multi-metal, high-performance parts on demand – saving time, costs and waste while reducing risk.

This revolutionary process rapidly deposits strong metals, alloys and other specialty materials at low temperatures. So they retain their intrinsic properties without needing to be melted.

By integrating this advanced technology into your existing systems, you can produce new parts with maximum uptime.



#### Some key advantages include:

- Low thermal load on materials (typically: scaffold 50-250°C, spray material 50-900°C) allowing the ability to work with thermally sensitive materials as well as dissimilar materials
- Deposition results can be in compressive residual stress for better as-built mechanical properties of many geometries
- Deposition rate typically 1-8kg/h, up to 15kg/h of material making it fit for production speeds/ volumes
- Mechanical properties similar to highly deformed bulk material
- Absence of a heat affected zone (HAZ), ensuring a quality bond without changing the microstructure (and thus, structural characteristics) of the scaffold

# Bringing a new age of automated manufacturing to your factory floor

#### Product comparison

| Product  | Category | Pressure         | Applications                                                                                                                       | Materials                                                                                                                               | Accessories                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|----------|------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D523     | S        | Low              | Coatings & Repairs                                                                                                                 | Reference existing data<br>(AM / High Perf. Alloys).                                                                                    | <ul> <li>Steel nozzle for manual repair applications</li> <li>Steel nozzle for larger flat-coating surfaces</li> <li>Ceramic wear-resistant nozzle for automated processes</li> <li>Water-cooled nozzle set for low-melting point metal and plastic feedstock.</li> <li>Adaptor set for 45° and 90° angles</li> </ul>                                                                              |
| D623     | S        | Low to<br>medium | Coatings & Repairs                                                                                                                 | Aluminium, Zinc Copper,<br>Tin, Nickel Babbit, Gold,<br>Silver Platinum, Inconel<br>625 (He), Titanium. Refer<br>to materials datachart | <ul> <li>Steel nozzle for manual repair applications</li> <li>Steel nozzle for larger flat-coating surfaces</li> <li>Ceramic wear-resistant nozzle for automated processes</li> <li>Water-cooled nozzle set for low-melting point metal and plastic feedstock.</li> <li>Adaptor set for 45° and 90° angles</li> <li>Intelligent Robotic Path Software</li> <li>Particle Velocity Camera</li> </ul> |
| ISB      | R        | Low to<br>high   | Coatings & Repairs                                                                                                                 | Aluminium, Zinc Copper,<br>Tin, Nickel Babbit, Gold,<br>Silver Platinum, Inconel<br>625 (He), Titanium. Refer<br>to materials datachart | <ul> <li>Broad range of customisation and accessories available.</li> <li>Steel nozzle for larger flat-coating surfaces</li> <li>Ceramic wear-resistant nozzle for automated processes</li> <li>Water-cooled nozzle set for low-melting</li> </ul>                                                                                                                                                 |
| TKF1000  | S        | High             | <ul> <li>Coatings &amp; Repairs</li> <li>Additive<br/>Manufacturing</li> </ul>                                                     | AISI 4300 UNS<br>J24045, Stainless Steel<br>304L, Inconel 718,<br>Commercially Pure<br>Titanium CP-Ti), Invar36                         | <ul> <li>1L, 3L or 15L High Rate Powder Feeding</li> <li>Glass and Extra Long Life Nozzles</li> <li>Internal Coating and 45° Nozzle</li> <li>Single or Dual Axis Part Rotation Unit</li> <li>Intelligent Robotic Path Software</li> <li>Particle Velocity Camera</li> <li>Custom Acoustic Enclosure &amp; Airflow</li> </ul>                                                                       |
| TKF 1000 | Ρ        | High             | <ul> <li>Coatings &amp; Repairs</li> <li>Additive<br/>Manufacturing</li> <li>High Volume<br/>Production<br/>Environment</li> </ul> | AISI 4300 UNS<br>J24045, Stainless Steel<br>304L, Inconel 718,<br>Commercially Pure<br>Titanium CP-Ti), Invar36                         | <ul> <li>Single, Dual or Quad 3.7L Powder Feeding</li> <li>High Speed, Precise CNC Motion Control</li> <li>"EasyTKF" Robotic Path Program Wizard</li> <li>Industry 4.0 NAS Database for Weight, Cameras,<br/>Sensors and Path Logging</li> <li>RunMyVirtual Machine - Digital Twin</li> <li>Cyber Secure Remote Support System</li> </ul>                                                          |



# **Materials**

In creating heterogeneous alloys, we can combine materials that typically don't go together (such as blending titanium with ceramic, or coating copper with stainless steel without needing to melt it) to reap the intrinsic benefits of each - such as combating corrosion, wear and any other issues impacting your operations.

#### Next generation materials

With problem solving in our DNA, we can recommend the right materials for the best possible outcome. Together with our technology, the possibilities are limitless.





Near net shape manufacture

**3D** freeform components

Multi-metal composite parts



coatings

**Joining dissimilar** metals

With problem solving in our DNA, we can recommend the right materials for the best possible outcome.

# **High performance alloys**

#### AISI 4330 UNS J24045

#### Characteristics

- Fine-grained, medium carbon, chromium-nickelmolybdenum alloy steel
- Superior strength, toughness, hardenability and low temperature impact properties

#### Applications

- High-performance applications that need toughness and wear resistance
- Aerospace, defence, oil and gas

| Mechanical Properties <sup>1</sup> | TKF                 | CSAM               |  |  |
|------------------------------------|---------------------|--------------------|--|--|
|                                    | Heat Treatment 1    | Heat Treatment 2   |  |  |
| Hardness Rockwell C                | 38 HRC              | 28 HRC             |  |  |
| Ultimate Tensile Strength<br>(UTS) | 1300MPa<br>(188ksi) | 950MPa<br>(138ksi) |  |  |
| Yield Tensile Strength<br>(YTS)    | 1180MPa<br>(171ksi) | 860MPa<br>(124ksi) |  |  |
| Elongation (%)                     | 8                   | 12                 |  |  |

1. TM E8 Standard Test Methods for Tension Testing of Metallic Materials

#### Stainless Steel 304L

#### Characteristics

• Stainless Steel 304 is a commonly used class of stainless steel. It is an austenitic, corrosion-resistant steel with excellent strength, toughness, fabrication characteristics and weldability.

#### Applications

- Used in the aerospace industry where parts require high-strength, corrosion, and temperature resistance.
- Typical applications are for aerospace and defence structures, chemical tanks, railing and trim in marine environments as well as piping, tubing and heat exchanger applications where corrosion resistance is key.

# Mechanical PropertiesTKF CSAM Heat TreatedHardness Rockwell B94 HRBUltimate Tensile Strength<br/>(UTS)645MPa<br/>(93ksi)Yield Tensile Strength<br/>(YTS)348MPa<br/>(50ksi)Elongation (%)32 (typ.)

#### Inconel 718

#### Characteristics

 Inconel 718 is a nickel-based super alloy that is well suited for applications requiring high strength in temperature ranges from cryogenic up to 760°C (1400°F)

#### Applications

- This alloy provides high strength and excellent corrosion resistance in seawater.
- Outside of aerospace, the largest single market for Inconel 718 is in assorted Oil & Gas applications. Common applications included fasteners, valve gates, seats, stems and trim.

| Mechanical Properties              | TKF CSAM            |                     |  |
|------------------------------------|---------------------|---------------------|--|
|                                    | Heat Treatment 1    | Heat Treatment 2    |  |
| Hardness Rockwell C                | 33 HRC              | 20 HRC              |  |
| Ultimate Tensile Strength<br>(UTS) | 1145MPa<br>(166ksi) | 1080MPa<br>(157ksi) |  |
| Yield Tensile Strength<br>(YTS)    | 977MPa<br>(141ksi)  | 680MPa<br>(99ksi)   |  |
| Elongation (%)                     | 8                   | 28                  |  |

# V

## Commercially Pure Titanium (CP-Ti)

#### Characteristics

 Commercially Pure Titanium powder may be manufactured using the hydrogenationdehydrogenation (HDH) process, which provides cost-effective irregular morphology powders that are uniquely processable with the TKF CSAM (Titomic Kinetic Fusion Cold Spray Additive Manufacturing) process.

#### Applications

- Superior specific strength (strength to weight ratio), ductility, and corrosion resistance is required.
- Aerospace structures, corrosion resistant parts, tanks, pressure vessels, piping components (tubes/valves/flanges), heat exchangers and many more industrial components.

| Mechanical<br>Properties <sup>1, 2, 3</sup> | TKF CSAM<br>(Recipe 1) | TKF CSAM<br>(Recipe 2) | TKF CSAM<br>(Recipe 3) |
|---------------------------------------------|------------------------|------------------------|------------------------|
| Ultimate Tensile<br>Strength (UTS)          | 727MPa<br>(105.5ksi)   | 830MPa<br>(120.4ksi)   | 792MPa<br>(114.9ksi)   |
| Yield Tensile<br>Strength (YTS)             | 619MPa<br>(89.7ksi)    | 784MPa<br>(113.7ksi)   | 707MPa<br>(102.5ksi)   |
| Elongation at<br>Break (%)                  | 10                     | 10                     | 13                     |
| Post Processing                             | Heat Treated           | Heat Treated<br>+ HIP  | Heat Treated<br>+ HIP  |
| Density                                     | ~98%                   | >99.9%                 | >99.9%                 |

1. Various grades and/or chemical compositions of TKF CP-Ti parts can be tailored. Contact Titomic for further information

 $\label{eq:constraint} \textbf{2}. \ \textbf{Rotationally fabricated coupon stock produced on Titomic TKF1000 system}$ 

3. ASTM E8 Standard Test Methods for Tension Testing of Metallic Materials

#### Invar36

#### Characteristics

 Invar36<sup>®</sup> is a 36% nickel-iron alloy possessing a near zero rate of thermal expansion from around -100oC (-148oF) up to 200oC (392oF) that is around a tenth of the expansion rate of carbon steels.

#### Applications

 Advanced composite moulds for aerospace industry scientific instruments, thermostats and cryogenic instrumentation, magnetic shielding, small electrical transformers, metrology devices, precision condenser blades, electrical circuit breakers, radar and microwave cavity resonators, special electronic housings, seals, spacers, and specialised frames and high voltage transmission lines.

| Mechanical Properties              | TKF CSAM Heat Treated |
|------------------------------------|-----------------------|
| Hardness Rockwell C                | 71 HRC                |
| Ultimate Tensile Strength<br>(UTS) | 511MPa<br>(74ksi)     |
| Yield Tensile Strength<br>(YTS)    | 367MPa<br>(53ksi)     |
| Elongation (%)                     | 26                    |

# TKF1000-S

#### Faster, simpler on-demand

Ideal for low to mid-size production applications, our modular system offers rapid and agile manufacturing, prototyping, custom parts and pilot runs before mass production.

Because the TKF 1000 can fuse dissimilar metals, it can be used with a wide variety of metals and alloys including titanium, steel, copper, nickel and magnesium.

#### **Pressure type**

High Pressure

#### **Key features**

- Large scale metal additive manufacturing
- Synchronised 6-Axis Robotics, Servo
- Positioning and TKF Controls

  Intuitive touch panel interface
- Protective sound-dampening booth
- System enclosure
- Downdraft extraction area
- Vacuum System
- Component positioning shuttle
- Rotary component positioning unit

#### Applications

- Repair metal surface defects like pitting, porosity, cracks and holes
- Geometric restoration of worn or damaged surfaces on engines, bearings, gearboxes and more
- Electrically conductive coatings
- Special coatings for wear, heat and corrosion resistance
- Corrosion protection and repair
- Hermetically sealed radiators and HVAC
- systems

## Materials

- AISI 4300 UNS J24045
- Stainless Steel 304L
- Inconel 718
- · Commercially Pure Titanium (CP-Ti)
- Invar36



#### Key benefits

| $\sim$            | $\sim$   | $\sim$ |
|-------------------|----------|--------|
| X                 | X        | X      |
| $\mathbf{\nabla}$ | $\nabla$ | v      |
| $\sim$            | $\sim$   | $\sim$ |

Manufacturing with advanced materials

 $\mathbf{k} = \mathbf{k} + \mathbf{k} +$ 

Automated robotic production

 $\circ^{\mathsf{O}_{\mathsf{o}}}$ 

Fuse dissimilar metals to create custom solutions

Additive manufacturing without distortion or oxidation



"L Mu allo

()

Multiple powder feeders allow rapid manufacturing with dissimilar metals

Combine multiple materials in parts

Cost effective digital manufacturing

Industry leading build rates

Industries



#### Accessories

#### TKF1000-S

- 1L, 3L or 15L high rate powder feeding
- Glass and extra-long-life nozzles
- Internal coating and 45° nozzle
- Single or dual axis part rotation unit
- Intelligent robotic path software
- Particle velocity camera
- Custom acoustic enclosure & airflow

#### TKF1000-P

- Single, dual or quad 3.7L powder feeding
- High speed, precise CNC motion control
- "EasyTKF" robotic path program wizard
- Industry 4.0 NAS database for weight, cameras, sensors and path logging
- RunMyVirtual machine digital twin
- Cyber secure remote support system



#### **Specifications**

| Build Envelope                                | 1x1x0.75m                       |  |  |
|-----------------------------------------------|---------------------------------|--|--|
| Footprint                                     | 6.3 x 4.1 x 3.6m                |  |  |
| Shuttle Load                                  | 750kg                           |  |  |
| Control / Robotics / Industry 4.0             |                                 |  |  |
| Controls Platform                             | Siemens                         |  |  |
| Interfacing                                   | Profinet or flexible            |  |  |
| Offline Robotic Simulation                    | Extensive path strategy options |  |  |
| Industry 4.0 Platform                         | Linux NAS server                |  |  |
| Digital Dashboard                             | Custom data visualisation       |  |  |
| Process parameter regulations                 |                                 |  |  |
| Gas flow                                      | +/- 0.5% from set point         |  |  |
| Chamber Temperature                           | +/- 3° C                        |  |  |
| Powder Output                                 | +/- 0.5%                        |  |  |
| Operation                                     |                                 |  |  |
| Max Temp. 1100°                               | 15 minutes to heat, 10 to cool  |  |  |
| Max Operating Pressure                        | 60 - 75 bar                     |  |  |
| Powder Feeder Swap                            | 60 seconds                      |  |  |
| General maintenance                           |                                 |  |  |
| Nozzle Change                                 | Under 5 minutes                 |  |  |
| Integrated Downdraft Floor<br>Extraction Area | 10.0m <sup>2</sup>              |  |  |
| Powder feeder system                          |                                 |  |  |
| Operating Pressure                            | 50 - 75 bar                     |  |  |
| Feed Ratio                                    | 10g/min - 330g/min (20kg/hr)    |  |  |
| Powder Volume per Feeder                      | 3.7 Litres                      |  |  |
|                                               |                                 |  |  |

# Together, we can make it possible.

**Titomic Limited - Head Office** Ground Floor, 365 Ferntree Gully Road, Mount Waverley, VIC 3149 Australia

Titomic USA 1321 Greystone Court Benton Harbor, MI 49022 USA

**Titomic Europe** It Vegelinskampke 9 8491 PD Akkrum, The Netherlands

info@titomic.com titomic.com



Conditions apply. Visit www.titomic.com/disclaimer for further information